
(c) Show that a real function of a complex varibale either has derivative zero or the derivative does not exist.
(d) Find the residue of $f(z)=\frac{1}{\left(z^{2}+a^{2}\right)^{2}}$ at $z=a i$.
2. (a) Find the analytic function $f(z)=u+i v$ if $u-v=\frac{\cos x+\sin x-e^{-y}}{2(\cos x-\cosh y)}$ and $f\left(\frac{\pi}{2}\right)=0$.
(b) If u and v are harmonic functions conjugate to each other in some region G then show that u and v must be constant.
(c) Evalute : $\frac{1}{2 \pi i} \int_{C} \frac{e^{z t}}{\left(z^{2}+1\right)^{2}} d z$ if $t>0$ and C is the circle $|z|=3$.
3. (a) Let C be the boundary of a square of vertices at the point $z=0, z=1, z=1+i, z=i$ taken in the counterclockwise sense. Show that $\int_{C} \pi e^{\pi \bar{z}} d z=4\left(e^{\pi}-1\right)$. 8
(b) Show that the function $f(z)$ defined by

$$
f(z)= \begin{cases}\frac{\operatorname{Im}\left(z^{2}\right)}{\bar{z}}, & z \neq 0 \\ 0, & z=0\end{cases}
$$

satisfied the C-R equation at the origin yet it is not differentiable there.
(c) Expand $\cos z$ into Taylor series about the point $z=\frac{\pi}{2}$ and find the radius of convergence.
4. (a) Check the differentiability of the function $f(z)=e^{x}(\cos y-i \sin y)$.
(b) Using Cauchy residue theorem, evaluate $\int_{C} \frac{\sin \left(\pi z^{2}\right)+\cos \left(\pi z^{2}\right)}{(z-1)^{2}(z-2)} d z$ where C is the circle $|z|=3$.
(c) Evaluate : $\int_{0}^{2 \pi} \frac{\cos 3 \theta}{5-4 \cos \theta} d \theta$
(d) If $f(z)=\frac{1+z}{1-z}$, determine $f^{\prime}(2+3 i)$.
5. (a) Evaluate $\int_{0}^{\infty} \frac{x^{2}}{x^{6}+1} d x$
(b) Determine a conjugate harmonic function u, where $u(x, y)=e^{x} \cos y$ in the complex plane C.
(c) Define extended complex plane. How do you represent geometrically on a sphere?
6. (a) Prove the necessary conditions that the function $f=u+i v$ is differentiable at a point $z_{0}=x_{0}+i y_{0}$ is that $u_{x}, u_{y}, v_{x}, v_{y}$ exists and $u_{x}=v_{y}, v_{x}=-u_{y}$.
(b) State Liouville's Theorem. Derive the fundamental theorem of algebra using it.
(c) Prove or disporve: The point $z=0$ is the only ingularity of the function $f(z)=\sin \left(1-\frac{1}{z}\right)$ and $z=0$ is a simple pole.

MATRICES

Answer any three questions.

1. (a) Prove that the set of vectors $\{(1,2,2),(2,1,2),(2,2,1)\}$ is linearly independent in \mathbb{R}^{3}.
(b) Find the conditions on $a, b \in \mathbb{R}$, so that the vectors $\{(a, b, 1),(b, 1, a),(1, a, b)\}$ is linearly dependent.
(c) For what values of k does the set $S=\{(k, 1,1),(1, k, 1),(1,1, k)\}$ form a basis for \mathbb{R}^{3}.
(d) Prove that the set $S=\{(2,1,1),(1,2,1),(1,1,2)\}$ is a basis for \mathbb{R}^{3}. $5+5+5+5$
2. (a) Show that the set $S=\left\{(x, y, z) \in \mathbb{R}^{3}: x+y+z=0\right\}$ forms a subspae of \mathbb{R}^{3}. Find a basis and dimension of the subspace S of \mathbb{R}^{3}.
(b) Find the inverse of the matrix A using elementary row operations on A.
(c) Solve the system of equations $x+y+3 z=0,2 x+y+z=0,3 x+2 y+4 z=0$.
3. (a) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be defined by $T\left(a_{1}, a_{2}\right)=\left(a_{1}-a_{2}, a_{1}, 2 a_{1}+a_{2}\right)$. Let β be the stanadard basis for \mathbb{R}^{2} and $\gamma=\{(1,1,0),(0,1,1),(2,2,3)\}$. Compute $[T]_{\beta}^{\gamma}$. If $\alpha=\{(1,2),(2,3)\}$, compute $[T]_{\alpha}^{\gamma}$.
(b) Find the rank of the matrix $\left(\begin{array}{ccccc}1 & 2 & 3 & 1 & 1 \\ 1 & 4 & 0 & 1 & 2 \\ 0 & 2 & -3 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0\end{array}\right)$.
4. Let V be a vector space, and let $T: V \rightarrow V$ be linear. A linear subspace W of V is said to be T-invariant if $T(x) \in W$ for every $x \in W$, that is, $T(W) \subseteq W$. If W is T-invariant, we define the restriction of T on W to be the function $T_{W}: W \rightarrow W$ defined by $T_{W}(x)=T(x)$ for all $x \in W$.
(a) Prove that the subspaces $\{0\}, V, R(T)$ and $N(T)$ are all T-invariant.
(b) If W is T-invariant, prove that T_{W} is linear.
5. (a) Prove that the product of the eigen values of a square matrix A is $\operatorname{det} A$.
(b) If λ be an eigen value of a non-singular matrix A, then prove that λ^{-1} is an eigen values of A^{-1}.
(c) Show that the eigen values of a real symmetric matrix are all real.
(d) Find the eigen values and eigen vectors of the matrix $\left(\begin{array}{ll}1 & 3 \\ 4 & 5\end{array}\right)$.
6. (a) Find a matrix P such that $P^{-1} A P$ is a diagonal matrix, where $A=\left(\begin{array}{lll}2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2\end{array}\right)$.
(b) Determine the conditions for which the system of equations $x+y+z=1$, $x+2 y-z=b, 5 x+7 y+a z=b^{2}$ admits of (i) only one solution, (ii) no solution, (iii) many solutions. $10+10$

LINEAR ALGEBRA

Answer any three questions.

1. (a) Prove that the intersection of two subspaces of a vector space V over a field F is a subspace of V. Is the union of two subspaces of V a subsapce of V ? Justify.
(b) Prove that the set of vectors $\{(1,2,2),(2,1,2),(2,2,1)\}$ is linearly independent in R^{3}.
(c) Let $S=\left\{(x, y, z) \in R^{3}: x+y+z=0\right\}$. Prove that S is a subspace of R^{3}.
(d) Show that $S=\left\{(x, y, z) \in R^{3}: x+y-z=0,2 x-y+z=0\right\}$ is a subspace of R^{3}. Find the dimension of S.
$(4+3)+4+3+(3+3)$
2. (a) Examine if the set S is a subspace of the vector space $R_{2 \times 2}$, where
(i) S is the set of all 2×2 real diagonal matrices;
(ii) S is the set of all 2×2 real symmetric matrices.
(b) Let V be a real vector space with $\{\alpha, \beta, \gamma\}$ as a basis. Prove that the set $\{\alpha+\beta+\gamma, \beta+\gamma, \gamma\}$ is also a basis of V.
(c) Define rank and nullity of a linear transformation.
(d) Let V and W be vector spaces over a field F. Let $T: V \rightarrow W$ be a linear transformation. Prove that Kernel of T is a subspace of V.
$(3+3)+5+4+5$
3. (a) Define a real vector space.
(b) Define basis and dimension of a vector space V over a field F.
(c) Define kernel and image of a linear mapping.
(d) Let V and W be vector spaces over a field F. Let $T: V \rightarrow W$ be linear transformation and $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$ be a basis of V. Prove that the vectors $\left\{T\left(\alpha_{1}\right), T\left(\alpha_{2}\right), \ldots, T\left(\alpha_{n}\right)\right\}$ generate image of T.
(e) Define linear dependence and linear independence of a set of vectors. $5+4+4+4+3$
4. (a) If $\alpha=(1,1,2), \beta=(0,2,1), \gamma=(2,2,4)$, determine whether α is a linear combination of β and γ.
(b) Let V be a vector spaces over a field F and let $\alpha, \beta \in V$. Then prove that the set $W=\{c \alpha+d \beta: c \in F, d \in F\}$ forms a subspace of V.
(c) Let $T: R^{3} \rightarrow R^{2}$ be a linear transformation defined by
$T(x, y, z)=(3 x-2 y+z, x-3 y-2 z)$.
Find the matrix of T relative to the ordered bases
(i) $(1,0,0),(0,1,0),(0,0,1)$ of R^{3} and $(1,0),(0,1)$ of R^{2}.
(ii) $(0,1,0),(1,0,0),(0,0,1)$ of R^{3} and $(0,1),(1,0)$ of R^{2}.
(d) Let $T: R^{3} \rightarrow R^{3}$ be a transformation defined by $T(x, y, z)=(x, y, 0)$. Prove that T is linear.
5. (a) Show that the set $S=\{(2,3,1,4),(3,2,4,1),(1,1,1,1)\}$ is linearly dependent in R^{4}.
(b) The matrix of a linear transformation $T: R^{3} \rightarrow R^{2}$ relative to the ordered bases $(0,1,1),(1,0,1),(1,1,0)$ of R^{3} and $(1,0),(1,1)$ of R^{2} is $\left(\begin{array}{lll}1 & 2 & 4 \\ 2 & 1 & 0\end{array}\right)$. Find T.
(c) Let V and W be vector spaces over a field F. Let $T: V \rightarrow W$ be a linear transformation. Then prove that T is injective if and only if $\operatorname{ker}(T)=\{\theta\}$.
(d) Define isomorphism of a linear transformation.
6. (a) Find $k \in R$ so that the set $S=\{(1,2,1),(k, 3,1),(2, k, 0)\}$ is linearly dependent in R^{3} 。
(b) Define inverse of a linear transformation.
(c) Let V and W be vector spaces over a field F. Let $T: V \rightarrow W$ be a linear transformation. Then prove that if T be linear then inverse of T is also linear.
(d) Find dimension of $S \cap T$, where S and T are subspaces of the vector space R^{4} given by

$$
\begin{aligned}
& S=\left\{(x, y, z, w) \in R^{4}: 2 x+y+3 z+w=0\right\} \\
& T=\left\{(x, y, z, w) \in R^{4}: x+2 y+z+3 w=0\right\} .
\end{aligned}
$$

VECTOR CALCULUS AND ANALYTICAL GEOMETRY

Answer any three questions.

1. (a) If $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$ then show that \vec{a} and \vec{b} are perpendicular.
(b) If \vec{a}, \vec{b} be two vectors such that $|\vec{a}|=10,|\vec{b}|=1$ and $\vec{a} \cdot \vec{b}=6$, then find the value of $|\vec{a} \times \vec{b}|$.
(c) Show that $\vec{\nabla}\left\{\frac{f(r)}{r} \vec{r}\right\}=\frac{1}{r^{2}} \frac{d}{d r}\left\{r^{2} f(r)\right\}, \vec{r}=x \hat{i}+y \hat{j}+z \hat{k}, r=|\vec{r}|$.
(d) Show that the vector $\vec{F}=(2 x-y z) \hat{i}+(2 y-x z) \hat{j}+(2 z-x y) \hat{k}$ is irrotational. Find a scalar point ϕ, such that $\vec{F}=\vec{\nabla} \phi$.
2. (a) Prove that $\vec{\nabla} \cdot(\vec{\nabla} f)=\nabla^{2} f$.
(b) Find $\vec{\nabla} \phi$ where $\phi=r^{n}, r=|\vec{r}|$ and $\vec{r}=x \hat{i}+y \hat{i}+z \hat{i}$.
(c) Reducing to canonical form, discuss the nature of the conic

$$
4 x^{2}-4 x y+y^{2}+2 x-26 y+9=0
$$

(d) A plane passing through a fixed point (a, b, c) cuts the axes in A, B and C. Show that the locus of the center of the sphere $O A B C$ is $\frac{a}{x}+\frac{b}{y}+\frac{c}{x}=2$.
3. (a) Define divergence of a vector point function.
(b) If f and g be two scalar point functions, then prove that $\vec{\nabla}(f g)=f \vec{\nabla} g+g \vec{\nabla} f$.
(c) Find the equation of the right circular cone which conains three positive coordinate axes.
(d) Find the equation of the right circular of radius 3 and whose axes is $\frac{x-1}{2}=\frac{y-2}{-3}=\frac{z-3}{6}$.
4. (a) Find the nature of the conic $x^{2}+4 x y+y^{2}-2 x+2 y+6=0$.
(b) Find the equation of the sphere having the center at $(2,-3,4)$ and radius equals to 5 unit.
(c) Find the equation of the sphere which passes through the points $(1,0,0),(0,1,0)$, $(0,0,1)$ and which touches the plane $2 x+2 y-z=15$.
(d) Find the equation of the cone whose vertex is the point $(1,2,3)$ and guiding curve is the circle $x^{2}+y^{2}+z^{2}=9, x+y+z=1$.
5. (a) Find the center and the radius of the sphere given by $2\left(x^{2}+y^{2}+z^{2}\right)-2 x+4 y-6 z=15$.
(b) Find the equation of the sphere passing through the four points $(0,0,0),(a, 0,0)$, $(0, b, 0)$ and $(0,0, c)$.
(c) Find the equation of the cylnder whose generators are parallel to the straight line $\frac{x}{-1}=\frac{y}{2}=\frac{z}{3}$ and whose guiding curve is $x^{2}+y^{2}=9, z=1$.
(d) Find the center and radius of the circle $x^{2}+y^{2}+z^{2}=25, x+2 y+2 z+9=0$.
6. (a) Find the eccentricity and foci of $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$.
(b) For the hyperbola $16 x^{2}-9 y^{2}=144$, find the vertices.
(c) Show that a necessary and sufficient condition for a scalar point function ϕ to be constant is that $\vec{\nabla} \phi=\overrightarrow{0}$.
(d) For every scalar point function ϕ, prove that curl of grad $\phi=0$.

